Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29238, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638978

RESUMO

Developing sustainable manufacturing methods that balance environmental and economic aspects is challenging. A comprehensive analysis of the economics of machining and carbon emissions is essential to encourage adopting sustainable practices. This work presents the machinability and comparative sustainability analysis of Nimonic 80 superalloy when it is machined utilizing a novel, environmentally friendly vegetable oil-based hybrid nanofluid-minimum quantity lubrication (MQL) and liquid carbon dioxide (LCO2) technique. The main objective is to comprehend the efficacy of the proposed approach on tool life, surface roughness, power consumption, total machining costs, and carbon emissions. Compared to other machining conditions, the use of hybrid nanofluid-MQL under 100 m/min cutting speed prevented rapid flank wear and considerably increased tool life by about 17-59 %. The change in cutting speed from 100 to 150 m/min has resulted in reduced tool life about 13-42 % under the selected environments. In addition, when compared to dry, flood, and MQL machining, the use of hybrid nanofluid-MQL and LCO2 reduced surface roughness by around 16-45 % at 150 m/min. Sustainability analysis revealed that machining at 150 m/min resulted in decreased costs ranging from 6.1 % to 36.4 % for selected cutting environments. Applying hybrid nanofluid-MQL lowered carbon emissions by 16.83 %, whereas LCO2 reduced carbon emissions by 14.6 % at 100 m/min. At 150 m/min, hybrid nanofluid-MQL and LCO2 lowered carbon emission by 22.3 % and 21.5 % at 150 m/min compared to dry machining. Compared to alternative cutting environments, hybrid nanofluid-MQL and LCO2 applications have longer tool lives, lower machining costs, and carbon emissions. As a result, they are economical and environmentally friendly.

2.
Materials (Basel) ; 12(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635370

RESUMO

These days, power consumption and energy related issues are very hot topics of research especially for machine tooling process industries because of the strict environmental regulations and policies. Hence, the present paper discusses the application of such an advanced machining process i.e., ultrasonic assisted turning (UAT) process with the collaboration of nature inspired algorithms to determine the ideal solution. The cutting speed, feed rate, depth of cut and frequency of cutting tool were considered as input variables and the machining performance of Nimonic-90 alloy in terms of surface roughness and power consumption has been investigated. Then, the experimentation was conducted as per the Taguchi L9 orthogonal array and the mono as well as bi-objective optimizations were performed with standard particle swarm and hybrid particle swarm with simplex methods (PSO-SM). Further, the statistical analysis was performed with well-known analysis of variance (ANOVA) test. After that, the regression equation along with selected boundary conditions was used for creation of fitness function in the subjected algorithms. The results showed that the UAT process was more preferable for the Nimconic-90 alloy as compared with conventional turning process. In addition, the hybrid PSO-SM gave the best results for obtaining the minimized values of selected responses.

3.
Materials (Basel) ; 11(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177673

RESUMO

Recently, magnesium (Mg) has gained attention as a potential material for orthopedics devices, owing to the combination of its biodegradability and similar mechanical characteristics to those of bones. However, the rapid decay rate of Mg alloy is one of the critical barriers amongst its widespread applications that have provided numerous research scopes to the scientists. In this present, porous Mg-based biodegradable structures have been fabricated through the hybridization of elemental alloying and spark plasma sintering technology. As key alloying elements, the suitable proportions of silicon (Si) and hydroxyapatite (HA) are used to enhance the mechanical, chemical, and geometrical features. It has been found that the addition of HA and Si element results in higher degree of structural porosity with low elastic modulus and hardness of the Mg⁻Zn⁻Mn matrix, respectively. Further, addition of both HA and Si elements has refined the grain structure and improved the hardness of the as-fabricated structures. Moreover, the characterization results validate the formation of various biocompatible phases, which enhances the corrosion performance and biomechanical integrity. Moreover, the fabricated composites show an excellent bioactivity and offer a channel/interface to MG-63 cells for attachment, proliferation and differentiation. The overall results of the present study advocate the usefulness of developed structures for orthopedics applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...